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Indirect Corrections for Confounding Under
Multiplicative and Additive Risk Models

M.H. Gail, mp, PhD, S. Wacholder, php, and J.H. Lubin, phD

We define a multiplicative model and an additive model for the hazards associated jointly
with exposure and with the presence of a confounder like smoking. Under the multi-
plicative model, the crude relative risk may be adjusted indirectly, by means of a factor
proposed by Axelson [1978], and impficitly by Cornfield et al. [1959] and Schlesselman
[1978]. We present corresponding indirect correction formulas under the additive risk
model for the risk difference and for the excess relative risk. Conditions are established
under which these corrections may be applied to age-adjusted rates from composite
study populations. We demonstrate that indirect corrections may be no better than crude
measures of risk if one assumes the wrong model for the joint action of the exposure
and confounding factors. These results are illustrated on an example of occupational
exposure to vermiculite. The limitations of the techniques are discussed.

Key words: relative risk, standardized mortality ratio, risk difference, excess relative risk, cohort
studies

INTRODUCTION

A recent conference entitled “Obtaining and using information on smoking in
occupational epidemiologic studies” included a workshop on “indirect methods™ for
adjusting relative risk estimates in the absence of specific confounder (smoking) data
for individuals. The basic strategy is to adjust crude relative risk measures by using
external information on the joint distribution of confounder and exposure, together
with external information on the relative risk of disease due to the confounding factor
among unexposed individuals. The paper by Axelson and Steenland [1988] highlights
and studies these methods.

We now explore the relationship between underlying models for the joint risk
of exposure and confounding factors and the “indirect” methods used to adjust crude
risk estimates. Lubin and Gaffey [1988] discuss multiplicative relative risk models as
well as additive relative risk models for the joint action of exposure and confounding
factors. We first define the multiplicative model and consider how to adjust the crude
relative risk, which is appropriate under a multiplicative risk model. Next we define
the additive risk model and show how to adjust the crude risk difference and crude
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excess relative risk, which are appropriate under an additive Tisk model. We then
apply these ideas t0 occupational studies in which data on individual smoking habits
are not available and consider the data of Amandus and Wheeler [1987] on lung
cancer risk among vermiculite miners.

In the last three sections We discuss the consequences of mistakenly applying
the wrong adjustment, as might happen if the wrong model is assumed. Just as using
the wrong model with complete information on exposure and confounding can lead to
misleading summary measures of risk from exposure, so can indirect adjustments that
are based on the wrong model be misleading. Moreover, indirect adjustments are
performed in the absence of data on confounding for individuals; in this setting we
have no internal information with which to select a model for joint action. A
previously reported study may provide guidance in the selection of a model for the
joint risks of exposure and confounder, and such information can be crucial in making

valid indirect adjustments.

THE MULTIPLICATIVE MODEL AND INDIRECT CORRECTION FOR THE
HAZARD RATIO

Axelson [1978] first proposed an indirect method to correct for confounding in
relative hazards, namely, the ratios of incidence rates. This method yields valid
estimates of relative risk if the effects of the confounder and the exposure act
multiplicatively on the risk, as we discuss below. Similar factors are given by
Cornfield et al. (19591, Miettinen [1972], and Schiesselman [1978] for relative risks,
namely, ratios of probabilities of events, without regard to time. We shall follow the
approach of Axelson [1978] by expressing our results in terms of hazard rates (events
per person-year).

Let 1;;; be the hazard (incidence of mortality) rate per person-year at age t for
an individoal at exposure leveli (i = 1if exposed, i = 0 otherwise) and confounder
level j § = 1if the confounder is present andj =0 otherwise). For the moment we
suppress the notation t, but we are always considering a specific age group, t. Later,
we make simplifying assumptions to allow one to carry out indirect corrections e¢ven
when age-specific data on the risk of exposure and confounding factors are not
available. The multiplicative model is

Ip; = RRcloos
Iio = RRgloo,
and I;; = Liolo1/Too M
= (L10/Too)Uo1/Too)oo
= (RRp)RR)oo-

This model implies that the relative hazard of exposure is constant over levels of the
confounder and that the relative hazard of the confounder is constant over levels of
exposure. Under the multiplicative model we seek a valid estimate of RRg by
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Corrections for Confounding 121

correcting the crude incidence ratio,

RRERVPE = {1 1)) + (1 = o}/ {molor + (1 — mo)lgo}
= (Iio/loe) {mRRc + (1 — w)}/{mRRc + (1 — mp)} (2)
= RREBIASM,

where 1, = P(j = 1|i = 1) and my = P (j = 1|i = 0) are the proportions of subjects
at age t with the confounding factor respectively among those exposed and those not
exposed. There is no confounding (BIASy, = 1) either if 7; = my or if RRc = 1. If
the quantities RR¢, 7, and mg are known, then a proper correction to RRERUDE may
be made by dividing by BIASy;. These results agree with Axelson [1978].

To apply this correction to composite data from different age groups, one would
need to have the correct values of RRc(t), w(t), and mo(t) for each age, and one
would need to assume a proportional hazards model of the form

Liae/Tore = Lig/Tooe = RRE, (3)

where RRg does not depend on age. The relative risk from confounding, RR(t) =
Io1/Too and the proportions with the confounding factor, m(t) and my(t) may still
depend on age under this model. For example, the proportion of an unexposed
population that smokes, wo(t), depends on age. Therefore a rigorous correction
procedure would obtain corrected estimates of RRg, separately for each age group and
then take a weighted average of these corrected relative hazards. We call model 3 a
“stratified proportional hazards model” because it only requires constancy of RRg
over age within strata defined by levels of the confounder.

It might be argued that age-specific information on RR¢(t), mo(t), and m(t) are
usually unavailable. Then the simple procedures used by Axelson [1978] may be
justified under the assumptions that RR¢, 7, and mp do not depend on age. The
assumptions that RRg and RR¢ are independent of t imply that Iy;,/Iooe, Lioe/Toor, @and
Loi/Iooe are free of t, even though Igy may vary with age. We call this a “full
proportional hazards model,” because hazard ratios for all levels of the exposure and
confounder variables must be constant over age. Under these assumptions, the
correction factor, BIASy, does not depend on age, and it may be demonstrated (see
Appendix) that:

1. The ratio of the age-adjusted rates for the exposed and unexposed
cohorts is (RRg) (BIASy), and therefore the same correction factor,
BIASy, for the confounder may be used for the composite age-adjusted
rates as for a single age stratum. All this depends on the strong assump-
tions above, but this result holds whether direct or indirect age adjustment
is used.

2. The age-adjusted SMR for the exposed cohort, computed with respect
to a general unexposed population with known age-specific rates, satisfies

SMR = (RRg) (BIASy),
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where RRg is the ratio of rates in the exposed and general reference
populations. This ratio is assumed to be the same for all subgroups defined
by age and the confounder. Again, the same correction factor BIASy may
be used, provided g is known for the general population.

The argument is analogous for case-control data. Indeed, case-control data stratified
for age will yield an age-adjusted common relative hazard [Prentice and Breslow,
1978] or RRERUPE, which may be divided by BIASy to estimate RRg.

We note that the use of t to index age may be broadened to index a Cross-
classification on age, calendar year, and other factors that might typically be con-

trolled by direct or indirect standardization. The assumption that RRj; is consiant over
t, as in equation 3, or the assumption that a full proportional hazards model holds
true, would then extend to each cell indexed by tin such a cross-classification. Similar
generalizations of the use of t apply to equation 6 and to the “additive hazards model”
discussed directly below.

THE ADDITIVE MODEL AND INDIRECT CORRECTION FOR THE EXCESS
RISK AND EXCESS RELATIVE RISK

The additive risk model at age t is given by
101 = IOO + RDc,

IIO = IOO + RDE, (4)
and I; = RD¢ + RDg + Ioo

= To1 + T1o — Too

where t is suppressed. We seck a valid estimate of RDg, the risk difference. The
crude risk difference

RDSRUPE = {m(Iyo + lo — loo) + (1 — 7lio}
— {molpy + (1 — wo)oo}
= (o — Ioo) + (m1 — To)lor ~Too) (5)
= RDg + (m — To)RDc
= RDg + BIAS4.

As before, the crude risk difference is a valid estimate of RDg (i.e., BIAS, = 0) if
RD¢ = Oorif m; = . Otherwise an appropriate correction is made by subtracting
BIASA() from RDERUPE() for those in age group t.

To treat composite populations composed of multiple age groups, weé SUppose
L — Tosr = Tioe — Joo = RDE (6)

is constant over age groups &, which is analogous to equation 3. As before, we
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Corrections for Confounding 123

suppose in general that m(t), mo(t), and RD¢(t) = gy, — Igo, depend on age, so that
BIASA(t) also depends on age. Thus, in general, a separate correction should be made
for each age group, and a weighted average of these corrected estimates RDg taken
as an estimate of RDg.

Again, if age-specific information is not available, indirect adjustments are
feasible under the simplifying assumptions that 7, 7, and RD¢ are independent of
age. Then BIAS, is also independent of age. The assumptions that RDg and RD¢ are
independent of t imply that 1y, — Ipoy, Lige — loor, and Ipy; — Igg, are independent of
t, even though Iy, may depend on t. These relations are analogous to the proportional
hazards model and might be termed the “additive hazards model.” Under these
assumptions, it is shown in the Appendix that any direct adjustment procedure that
assigns the same age distribution to both exposure groups yields a crude risk differ-
ence of RDg + BIAS,, so that the common bias term BIAS, may be subtracted to
correct the direct age-adjusted estimate of risk difference.

Although the risk difference RDg is an important measure of the public health
burden imposed by exposure, this quantity cannot be estimated from case-control
studies, which only yield data on relative hazards [Miettinen, 1976; Prentice and
Breslow, 1978]. Under the additive model 4, at a fixed age t, one can still examine
the excess relative risk from exposure,

ERRg = (Iip — Ipo)Too = (ix — To1)/Too-

Note that ERRy, is expressible as the difference of two relative risks and can therefore
be estimated from case-control data. Dividing the additive model 4 by Iy, we
reparameterize it in terms of ERRg and

ERRc = (Ip1 — Too)/Too = (i1 — Lio)/loo

as I()] = IO()(ERRC + 1), (7)
Iio = Ipo(ERRg + 1),

and I;; = Ioo(ERRg + ERRc + 1).

These relationships are equivalent to the definitions of additivity and excess relative
risk in equations 15-2, 15-3, and 15-4 of Rothman [1986]. For a fixed age group, t,
we can thereby re-express the crude excess relative risk as
ERRERUPE = RDERVPE/{Tgymg + Ioo(l — 7o)}
= (RDg + BIASA)/{Ig1mo + loo(1 — mg)} 8)
= Ipo{ERRg + (m; — m0)ERR¢}/{Ip17mo + Ioo(1 — o)}
= {ERRE + (7("1 - ‘R'())ERRc}/{ERRc‘H'O + 1}
Note that ERRERVPE = ERRg if ERR¢ = 0, namely if C is not an independent risk

factor. However, unlike previous cases, m; = mg is not sufficient to ensure
ERRERVPE = ERRg. Only when ERRg = 0 does 7; = g ensure no confounding.
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To correct ERR(, we solve 8 to obtain
ERRy = ERRERVPE {ERR¢mg + 1} — (71 — mo)ERRc. 9

This correction applies to a specific age group t.

Suppose ERRg, is constant over age groups. Then separate corrected estimate
of ERRg, may be obtained for each age group, provided my(t), 71{t), and ERR(t) ar
known, and an overall estimate of ERRg is obtained as a weighted average a
corrected age-specific estimates.

As before, if age-specific data are not available, we can proceed under th
assumptions that m(t), wo(t), and ERRc(t) are independent of time. The assumption
that ERRg and ERR( are both independent of time imply the “proportional hazard
model,” namely Ii1¢/Toow Liot/Toor, and Iose/looe are independent of time, although Iy
may vary with time. The absolute rates I, Ijp, and Igy are given by equation
Under these assumptions, it is demonstrated in the Appendix that the same correctio
equation 9 may be applied to the composite age-adjusted excess relative risk as th
excess relative risk for any single age stratum. However, the age adjustment shout
be based on direct, and not indirect standardization for age.

Under the same assumptions, a case-control study with stratification on ag
will yield an age-adjusted estimate of the relative hazard for exposure that equal
RRERVPE | from which ERRERVPE = RRERVPE — 1 may be computed. The quantit
ERRERVPE may be corrected via equation 9 to obtain a valid estimate of ERRg.

The definition of excess relative risk discussed in this section is commonly use
and is constant over levels of the confounder under an additive risk model. Under th
multiplicative risk model, one could define ERRg = (Ijp — Lo}/l = (1 — Io)/k
instead. Then, from the relationship ERRg = RRg — 1, one would obtain the indire
correction ERRg = (ERRERVPE + 1)(BIASy) — 1. In the remainder of this papes
however, we adhere to the definition and methods appropriate for the additive ris
model.

EXAMPLE

Amandus and Wheeler [1987] observed 20 cases of lung cancer during 13,50
person-years of follow-up in a cohort of vermiculite miners. They calculated 8.9
lung cancer deaths would be “expected” from general U.S. age-specific lung cance
death rates. If one sets the standard age distribution P(t) (see Appendix) cqual to th
proportion of person-years exposure that falls in age group t in the exposed cohor
then the age-adjusted hazard rates are I = 20/13,502 = 1.481 x 1073 from (A
and Iy = “expected deaths”/13,502 = 8.96/13,502 = 66.4 X 1073 from (A2
Hereafter, we omit the factor 107> when referring to hazard rates and note that t
units are per 10° person-years.

The SMR may be calculated as I[/1; = 20/8.96 = 2.23, but this is a crud
estimate of RRg, because smoking is not taken into account. Amandus and Wheels
[1987] assumed RRc = 14 for smoking, and they assumed that 84% of mine
smoked (r; = 0.84), compared with 67% (mp = 0.67) for the general U.S. popul:
tion. They employed Axelson’s [1978] formula, which is equivalent to our equatio
2, to obtain the corrected estimate
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RRg = 2.23({.84 X 14 + .16}/{.67 x 14 + .33}]"!
= 2.23/1.228 = 1.82.

As discussed above and in the Appendix, the validity of applying this correction to
the SMR, which can be thought of as the ratio I3/Iy, depends on the assumptions that
71, T, RRg, and RR¢ do not vary substantially with age, and that the multiplicative
model 1 holds for each age group. Under this model, the corrected estimate RRg =
1.82 and the value RR¢ may be used to reconstruct the underlying age-adjusted rates.
For example,

0‘664—1017F0+100(1—"7l'0) I()o(l4>< 67 + 33)

implies
Iop = 66.4/9.71 = 6.84.

Other terms in Table I are obtained from equation 1. The asterisks denote age-
standardized rates based on the age distribution P(t) defined above.
Suppose instead that the additive model 4 holds. The crude risk difference I —
I = 148.1 — 66.4 = 81.7 is adjusted via equation 5 to obtain
RDg = 81.7 — (.84 — .67)RD¢
81.7 — (.17)(88.9)
= 66.6.

Here we have taken RD¢ = 95.74 — 6.84 to be consistent with RRc = 14 in the
unexposed U.S. population (see Table I). The remaining age-adjusted rates are
obtained from the additive model 4 (see Table I). The crude estimate of excess relative
risk ERRERVPE = (IT — Ig)/I; = (148.1 — 66.4)/66.4 = 1.23, which may be
corrected according to equation 9 with ERR¢ = RR¢ — 1 = 13 to obtain

TABLE L, Crude and Corrected Lung Cancer Mortality Rates Per 10° Person-Years®

Miners U.S. population
(exposed) (unexposed)
Age-adjusted hazard rates I} = 148.1 Ij = 66.4
Corrected hazards under the
multiplicative model
Smokers Iy, = 174.0 Iy, = 95.7
Nonsmokers Tig = 12.4 Ijo = 6.84
Corrected hazards under the
additive model
Smokers I, = 162.4 Iy = 95.7
Nonsmokers Ijp = 73.5 Ino = 6.84

TAsterisks indicate that these are direct standardized rates with respect to the age distribution P(t) that
equals the proportion of person-years follow-up in age group t in the exposed study cohort.
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ERRg = 1.232(13 X .67 + 1) — (.84 — .67)(13)

= 9.75,

which agrees with (Lo — Igo)/Too and (%, — T/l under the additive model in
Table 1.

We have used the estimates of Ij;, Iip, Ioy, and Igo, calculated under the
multiplicative and additive models respectively, to study the effect of the choice of
the risk model on indirect corrections for RRERVPE, RDERVPE, and ERRERVPE
(Table 1I). Note first that the corrected RRg is 1.82 for smokers and nonsmokers
under the multiplicative model, but that the corrected RRg is 1.70 for smokers and
10.7 for nonsmokers under the additive model. Thus the choice of the risk model has
a great impact on the final estimates of relative hazard. Likewise, corrected values of
RDg, and ERRg, are the same for smokers and nonsmokers under the additive model,
whereas RDg = 78.5 and 5.59 respectively for smokers and nonsmokers under the
multiplicative model, and corresponding values for ERRg are 11.5 and 0.817. Again,
the choice of the risk model has a great impact on “corrections” produced. Unfortu-
nately, without measurements on smoking status for each study participant, we cannot
check the risk models to see if either is appropriate. At best, we might rely on
knowledge of the joint action of smoking and vermiculite obtained from another
independent study to justify our choice of a risk model and consequent correction

procedures.

MODEL SELECTION AND INDIRECT CORRECTIONS

The choice of an appropriate summary measure of risk from exposure depends
on the underlying model of joint action of exposure and confounder (Table IT). This
is true whether or not data on confounders are available. If the model is additive, the
assumption of a common relative hazard, RRg, may mask important variations in
relative risk among subsets of the population. For example, the relative risks of
exposure differ dramatically for smokers and nonsmokers under an additive model in
Table II. If the model is multiplicative, the calculation of a common risk difference,
RDy, or common excess relative risk, ERRg, may mask important differences in
these guantities, as illustrated in the comparison between smokers and nonsmokers in

TABLE II. Crude and Corrected Measures of Exposure Effect for the Additive and Multiplicative

Models’
RRy RDg(X 10°) ERRg
Crude I/ = 2.23 I -1y = 8.7 Go/lo = 1.23
Corrected with the
multiplicative model
Smokers 1.82 78.5 11.5
Nonsmokers 1.82 5.59 0.817
Corrected with the
additive model
Smokers 1.70 66.6 9.75
Nonsmokers 10.7 66.6 9.75

+Asterisks indicate that these are direct standardized rates with respect to the age distribution P(t) that
equals the proportion of person-years follow-up in age group t in the exposed study cohort.
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Table II. Indeed, for purposes of assessment of public health risk, the most interesting
feature of Table II is the small risk difference for nonsmokers and the large risk
difference for smokers under the multiplicative model.

Unfortunately, studies in which indirect corrections are needed do not provide
the necessary data on exposures and confounders to test models of joint action. To
facilitate the selection of appropriate models, it would be helpful if those studies that
do provide information on exposures and confounders would report more complete
assessment of joint risk than is customary. If the literature provides little guidance on
the choice of a model for joint action, it would be prudent to carry out indirect
corrections both for the relative risk under a multiplicative model and for the risk
difference or excess relative risk under an additive model. This procedure would
allow one to gauge the importance of confounding for either model and to judge
whether the same qualitative conclusions would be reached under either model.

Indirect correction produces quite different effects on the excess relative risk
than on other measures of risk (Table II). Under the multiplicative model, indirect
correction results in a decrease in the relative risk of (2.23 — 1.82)/2.23 = 18% and,
under the additive model, indirect correction leads to a decrease of 81.7 — 66.6)/
81.7 = 18% for the risk difference, whereas indirect correction leads to an increase
of (9.75 — 1.23)/1.23 = 693% for the excess relative risk. One can calculate the
quantities, (corrected value — crude value)/(crude value) respectively for RRg, RDg,
and ERRy; as

(mo — m1) RR¢ — 1) {m(RR¢ — 1) + 1}~! (10)
RDg{l; — Ip}~! ~1 (11)

and
RDg(lo/Too){l; — Ip} ! —1. (12)

Recall that RRC = 101/1005 RDE = IIO - Ioo, I] = 71"11“ + (1 -~ 77'1)110, and IO =
wolor + (1 — mg)lgo. Suppose, as in the section above, that RRe > 1,RDg > 1, and
7y > wp. Then equations 10 and 11 must be negative, whereas equation 12 may be
either positive or pegative, according as wolig — wilgy is positive or negative.
Moreover, the quantity 12 may be quite large when Ipo is much smaller than I,. For
instance, in the example in the section above, the high frequency of smokers in the
unexposed population (7 = 0.67) and the high risk from smoking cause Iy = 66.4,
compared with only 6.84 for Iy, . These properties imply that indirect correction may
have a much more dramatic impact on the excess relative risk than on the relative
risk or risk difference. If cohort data were available, the risk difference would
therefore seem to be a better summary statistic than the excess relative risk under
additive risk models. If only case-control data are available, one is forced to rely on
the excess relative risk under the additive model.

DISCUSSION

We have noted that indirect corrections are linked to models of joint risk for
exposures and confounders and stressed the need to explore both the additive and
multiplicative models when substantial uncertainty exists. For most purposes this
would seem to be sufficient, although other families of models of joint action that
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include the multiplicative and additive models as special cases as well as intermediate
and more extreme models have been studied [Thomas, 1981; Breslow and Storer,
1985: Guerrero and Johnson, 1982; Moolgavkar and Venzon, 1987; Lubin and Gaffey,
1988].

A second warning is needed for studies of composite populations. One must
assume a constant effect of exposure and confounder, whether on the multiplicative
or additive scale, and constant confounder fractions 7y and g for all age groups in
order to carry out a simple adjustment via equations 2, 5, and 9. This assumption
may often be sufficiently accurate for practical calculations. If more specific infor-
mation is available on the variation with age of the effect of the confounder and of 74
and g, then individual corrections should be performed for each age group and 2
weighted average of the corrected exposure effects should be computed.

Another practical difficulty in employing indirect adjustments is the need for
information on the effect of confounding in the unexposed population and on ; and
wo. Fortunately, much is known about the effects of smoking in an unexposed
population, and estimates of y and mo may be obtained from tables in Brackbill et
al. [1988] and Stellman et al. [1988]. In cases where available data on risks in the
unexposed population and on m; and 7o are less certain, one should study ranges of
plausible values. Extensions to confounders at multiple levels are straightforward, but
often knowledge of the confounder effects at various confounder levels and of the
distributions of confounder Jevels for exposed and unexposed populations woulid not
be available.

Despite these problems, we believe that correction for smoking effects should
be examined routinely, but with care, in occupational studies that do not obtain
smoking information. These correction formulas can enhance the validity and credi-
bility of these studies, particularly when the corrections are small and yield qualita-
tively similar results for both the additive and multiplicative models.
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APPENDIX
Corrections for Composite Populations with Adjustment for Age but not for
the Unmeasured Confounder

Let Iy be the hazard rate for age group ¢ at exposure level i (i = 0,1) and
confounder level j (j = 0,1). We assume throughout this appendix that P( il =
#(j|i) is independent of t. In the previous notation mo = w(j = 1|i =0)and 7, =
w(j=1]i=1).

First consider the multiplicative model 1. We make the added assumptions that
RRg (equation 3) and RR¢ are independent of t. Suppose we perform direct age
adjustment with respect to a reference age distribution P(t) to obtain the age adjusted
hazard for exposed,

I = )t: P@t) {Z L 7(j| D} (A1)
j

The term in curly brackets is the crude rate in age group t, because it is a mixture of
confounder-specific rates. Thus I} is a crude age-adjusted rate. We similarly define

Ip = 23 P {X I 7(j|0)}. (A2)
]

From the previous assumptions, BIASy, is independent of t, so that, from equation 2,

I/ = 23 P(t) {(RRg) (BIASy) I Loy (j|0)}/Ig
]
= (RRg) (BIAS\).

(A3)

Thus the same factor BIAS; used for a single age stratum may be used to correct the
ratio of two direct age-adjusted hazard rates.

Indirect standardization is a special case of direct standardization when the
standard age distribution is taken as that of the study population. With P(t) now
chosen to be the age distribution in the exposed study cohiort (i = 1), the indirect
adjustment for age is precisely

SMR = “observed”’/“‘expected” = I}/ly = (RRg) (BIAS)). (A4)
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Thus the same bias factor may be used. Suppose instead that two study populations,
one exposed and one unexposed, are each standardized with respect to age-specific
rates from a third general population. Then, the ratio of age-adjusted SMRs reduces
to

SMR,/SMR; = (RRg) (BIASy) (AS)

where RRg = Iyj¢/Io;; and BIASy is given by equation 2 as before. All terms involving
the common general population cancel out; in particular, the denominator of BIASy
in equation 2, which refers to the probability that j = 1 in the general population,
cancels out.

We now consider the risk difference, RDg. Let I} and I be direct age-adjusted
rates given by equations Al and A2, where P(t) is an arbitrary reference age
distribution. It follows from the assumptions that 7y, mp, RDg, and RD¢ are indepen-
dent of time that

I —Ip= 7{4 P(t) Z{ly;wG|1) — Tojew (G| O)}
j
— I P(){RDg + BIAS,} (A6)
t
- RDg + BIAS,.

Thus, the same factor BIAS 4 computed in equation 5 may be used to correct the age-
adjusted risk difference. In contrast to equation A5, indirect standardization for age
is not appropriate for computing an age-adjusted risk difference between two study
populations, one exposed and one unexposed and each standardized with respect to
rates from a third general population, because two different age distributions, one for
the exposed study cohort and one for the unexposed study cohort, come into play.

Similar results apply for the excess relative risk. Under the assumptions that 7y,
7o, ERRg, and ERRc are independent of age, the crude excess relative risk is

T P(){ERRg + ERRc(m; — mo)}
t

@ ~ Io)lp = L P(®(ERRcmg + 1)
- (A7)

= {ERRE + ERRc(ﬂ'l - Wo)}/(ERRcﬂ'O + 1),

in agreement with equation 8. As before, [jand Iy are direct age-adjusted rates. It
follows from equations 8 and A7 that the same corrections may be applied to the
crude excess relative risk obtained from age-adjusted rates as to crude age-specific
excess telative risks. Note, however, that one must use direct age adjustment for
these results to hold. The factor X P(t) does not cancel out if indirect adjustment is
used, because the different age distributions for the exposed and unexposed cohorts
come into play.
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